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Rivers and canals with perimeters c.omposed of non-cohesive sand and silt have 
self-formed active beds and banks, They thus provide a most interesting fluid flow 
problem, for which one must determine the container as well as the flow. If bed load 
alone occurs across the perimeter of a wide channel, gravity will pull partides down 
the lateral slope of the banks; bank erosion is accomplished and the ahannel widens. 
In  order to maintain equilibrium, this export of material from the banks must be 
countered by an import of sediment from the channel centre. 

The mechanism postulated for this import is lateral diffusion of suspended sediment, 
which overloads the flow near the banks and causes deposition. The model is formulated 
analytically with the aid of a series of approximate but reasonable assumptions. 
Singular perturbation techniques are used to define the channel geometry and obtain 
rational regime relations for straight channels. A comparison with data lends credence 
to the model. 

It is hoped that a first step has been made towards a more general treatment, 
which would include various complicating factors that are important features of 
natural rivers but are not essential to the maintenance of channel width. Among 
these factors are meandering, sediment sorting and seepage. 

1. Introduction 
Alluvial rivers possess channels that are self-formed by the flow of sediment-laden 

fluid. A considerable body of analytical work exists concerning the flow and sedi- 
mentary forms in channels of specified geometry (e.g. Kennedy 1963; Engelund 1970). 
When the question as to how rivers form and maintain their channels is raised, 
however, the analytical literature eva,porates to leave a few qualitative descriptions. 

Einstein (1972) notes, ‘It is much less well known and appreciated that wash 
[suspended] load is continuously being deposited on the banks of the active channels 
of alluvial rivers . . . . As long as the river is neither widening nor narrowing its channel, 
bank material is being scoured and deposited . . . . If a stream maintains an equilibrium 
width, this status must be interpreted as a statistical equality of the rate of scour 
and the rate of deposition.’ 

In this paper the above statement is formulated analytically for the simplest 
possible case, that of a wide, laterally symmetrical, straight channel in uniform 
non-cohesive suspendable sand or silt carrying a constant discharge. The bed is 
assumed to be covered with dunes. In  most field cases the problem is complicated by 
such factors as cohesive material, vegetation, meandering, etc. Thus the analysis is 
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not meant to give a pretence of generality. It rather attempts to provide a foundation 
for a more general model; for surely although such factors as vegetation, cohesive 
material and meandering affect channel geometry strongly, none is essential for the 
existence of a self-formed channel. Furthermore, any mechanism which can stabilize 
field-scale channels in the absence of these factors may be thought to be of importance 
in their presence as well. 

According to Einstein’s statement, equilibrium channels can be maintained if bank 
scour is balanced by bank fill. Bank erosion can occur as material is removed by either 
lateral bed load due to gravity or entrainment into suspension. In a straight wide 
channel of smooth symmetrical cross-sectional shape, secondary currents can be 
expected to be weak and no effective mechanism exists to move bed load up from the 
bed to the banks. (This point is discussed in a separate section later.) Thus bank fill 
must be deposited from suspension. , 

The gravitational mechanism for bank scour is recognized by Hirano (1973) and 
Smith (1974) in their pioneering studies of self-formed channels. Neither, however, 
includes a mechanism to balance this scour and maintain a constant width. They 
predict channels that widen in the downstream direction even with constant water 
and sediment discharges. Herein the addition of a description of bank deposition is 
shown to lead to equilibrium channels. 

The case of gravel rivers in which neither bank nor bed material can be suspended is 
treated in the companion paper (Parker 1978). 

2. Self-formed rivers and canals in non-cohesive suspendable material 
The non-cohesive channel as postulated in the previous section has some close field 

analogues. Sand predominates in the bed, banks and flood plain of considerable 
reaches of many of the streams arising in the Nebraska Sandhills, U.S.A., such as the 
Elkhorn River (Brice 1974), the Niobrara River (Colby & Hembree 1955) and the 
Middle Loup River (Hubbell & Matejka 1959). Bridge & Jarvis (1976) have described 
a reach of the River South Esk, Scotland, in which cohesive material is again almost 
entirely absent. Except €or the deepest portion, where gravel is exposed, the channel 
is composed of sand. The existence of low natural levees indicates the ease with which 
this sand is suspended. 

The alignment of these reaches varies from highly meandering (Elkhorn) to straight 
(Middle Loup). The limiting case of an essentially straight, non-cohesive, laterally 
symmetrical channel with constant discharge and with dune resistance is achieved 
in seven of the irrigation canals studied by Simons & Albertson (1963). These channels 
are observed to transport sand and silt in suspension, and the bank material shows 
an upward fining sequence, suggesting its deposition from suspension. 

3. The hypothesis 
The cross-section in figure 1 is considered. The channel has width B,  constant 

downstream slope S, centre depth D, and a perimeter of non-cohesive sand or silt 
with diameter D,. The lateral distance from the left water margin is y and the depth is 
D(y). The bank region is assumed to be of moderate curvature; if L is the distance from 
the water margin to the point where D(y) = 0.99Dc, then (D,/L)z is assumed to be 



Rivers with equilibrium banks and mobile bed. Part 1 111 

Left bank Central Right bank 
region region region 

C - L - :  B-2L - L -  

A 5 

FIGURE 1. Definition diagram. 
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FIGURE 2. Lateral profiles of (a)  vertically averaged suspended sediment concentration in parts 
per million and ( b )  depth in feet, section B, Middle Loup River (from Hubbell & Matejka 1959). 
0-0, 26 June 1951; a-a, 16 August 1951; 0-0, 6 May 1952. 

small. The channel is divided into an essentially flat central region where D 0.990, 
and bank regions where D < 0.99 D,. 

Of the two vertical sections AA’ and BB’ in figure 1 ,  the former is the shallower. 
In so far as the downstream slope S is constant over the cross-section, the friction 
velocity u* r (gDX)J (g is gravitational accelerat,ion) and thus the level of turbulence 
can be expected to  be lower in the shallower section, implying a reduction in the 
ability to support suspended sediment. For example, in figure 2, the lateral distribution 
of suspended sediment over a fairly symmetrical cross-section of the Middle Loup 
River near Dunning, Nebraska exhibits a consistent tendency to decrease from the 
centre to the banks (Hubbell & Matejka 1959). Returning to figure 1, a lateral con- 
centration gradient from AA‘ to BB‘ and a net diffusion of suspended sediment from 
the centre to the banks can be expected. The shallower banks thus become overloaded; 
the excess must be deposited, causing a decrease in depth. Likewise, this export from 
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the central region leaves it underloaded; the deficiency must be obtained from the bed, 
causing an increase in depth. 

Equilibrium is achieved by the return of the deposited bank sediment to  the 
central region owing to a component of bed load directed down the lateral slope under 
the influence of gravity. 

If 9' is the vertically integrated lateral volumetric transport of suspended sedi- 
ment and qBL is the lateral volumetric bed load, both per unit downstream length, a 
condition for equilibrium is 

for all values of y. If I is the volumetric rate of erosion into suspension per unit bed 
area and 93 is the corresponding deposition rate, then 9 must exceed I close to the 
water margin, and 93 must be less than I on the bank region near y = L in order for 
9' t o  be directed towards the banks. 

9 L f q B L  = 0 

4. Erosion and deposition on the bed of infinitely wide channels 
A correct description of overloading and underloading is essential to the formula- 

tion of bank deposition. It can be obtained through the use of a proper bed boundary 
condition for suspended sediment. To this end the vertical volumetric flux of suspended 
sediment above a horizontally uniform channel of infinite width is considered. 

Let z be height above the bed. The vertical flux F, consists of two components: the 
convective flux Fzc = -v,c, where v, is fall velocity and c is volumetric sediment 
concentration, and the diffusive flux F,,, which is assumed to be Fickian and of the 
form 

Here e is a kinematic eddy diffusivity. 
The bed is located a t  z = a, where a = 0 if a vertically constant eddy diffusivity is 

used and a is a few grain diameters above the bed if the Rousean eddy diffusivity is 
used (to avoid singular behaviour a t  z = 0). The volumetric rate a t  which suspended 
sediment is supplied to the fluid from the bed is given by the net rate of erosion & - 52. 

The correct bed boundary condition is that the vertical flux of suspended sediment 
should be continuous at the bed: 

F,, = - ~ ( 2 )  &/&. 

lim F,(z) = [ - v, c - sac/az], = a = 8 - 9. 
,-+a 

The mechanism for bed deposition is the fall velocity. If the bed neither attracts nor 
repels particles that  fall on it, the process is passive, and thus 

9 = vscIz,,. (2) 

(Attraction and repulsion become important for electrically charged cohesive material.) 
For non-cohesive material, then, the bed boundary condition reduces t o  

- E ( Z )  [ a c / a ~ ] , = ~  = V, E ,  (1 b )  

where E = b / v ,  is a dimensionless erosion rate. This condition applies strictly to 
horizontally uniform conditions that may vary in time, and can be extended to 
conditions that vary slightly in space as well. Since (1 b )  is formulated in terms of the 
concentration gradient, it is referred to as the gradient boundary condition. 
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The condition (16)  cannot be used unless an independent prescription of E in 
terms of flow conditions is available. The method adopted to accomplish this is to 
(a) evaluate E as a function of flow variables for the classical case of steady, horizon- 
tally uniform flow in which F, vanishes everywhere (zero-flux flow) and ( b )  use this 
evaluation in (1) applied to slightly varying conditions. For zero-flux flow, both (1) 
and the condition of vanishing flux F, at the bed, viz. 

wscI,=, = -e[ac/az],=,, 8 = 9, (3% b )  

(4) 

must be satisfied. From (1 b )  and (3a ) ,  if c, is the value of GI,=, observed for zero-flux 
flow then 

The quantity c, (bed concentration) can be deduced from experiments or field data 
approximating zero-flux flow and related to flow conditions. An example is one based 
on a constant eddy diffusivity e = O.O77u, D: 

C, = E. 

C, = E = 0.0073(~*/~ , )~ ,  (5) 

which Engelund (1970) found to be approximately valid for plane or antidune beds 
and values of D, ranging from 0.1 mm to 0.28 mm. 

Heretofore many researchers have followed the lead of Einstein ( 1  950) and assumed 
the bed boundary condition for varying flows to be of the form 

cI,=a = ca ,  (6) 

where c, is a prescribed function of flow conditions, e.g. (5). This form is referred to as 
the concentration boundary condition. 

Clearly the gradient and concentration boundary conditions become equivalent for 
zero-flux flow, which is the classical case, where (3) and (4) hold. I n  this case, the 
balance equation is dF,/dz = 0 ,  or 

and the water surface boundary condition is that  of vanishing flux, &I,=, = 0. 
Application of either the gradient or the concentration boundary condition leads to 
the same solution: 

c = c,,(z) = Eexp(- IaZ2dz) ,  

where c,,(z) denotes the equilibrium concentration. 
The two boundary conditions are not equivalent, however, for varying flow, where 

(3) and (4) do not hold, even though the same form for c, and E ,  e.g. ( 5 ) ,  is used. The 
difference is critical to the present analysis in that only the gradient boundary con- 
dition describes overloading and underloading correctly. This is illustrated with a 
simple example in the appendix, in which the difference in the predicted concentration 
profiles is large. 

5. Lateral sediment transport in self-formed channels 
The gradient boundary condition is now used to formulate the model of 3 3. A series 

of assumptions and simplifications is introduced to do this. Some are severe but all 
are reasonable and have been used in similar contexts by previous authors, and most 
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have some support in terms of data. This procedure, which leads to a solution as 
approximate as the assumptions, is dictated by the complexity of the problem, and 
is not without precedent. As Engelund (1970) notes concerning his own model of 
fluvial bedforms, ‘. . . the model makes use of some rather drastic simplifications in 
order to permit a reasonably convenient mathematical description ’. 

The lateral diffusive flux, assumed in $ 3  to drive overloading (and underloading) 
leading to bank deposition, is given by 

F., = - ev a c p y ,  

where ev is the lateral kinematic diffusivity. The cross-sectional specification of B., and 
B is no easy problem, particularly in that eddy diffusivities are not locally determined. 
The simplest justifiable procedure is to set both equal to constants corresponding 
loosely to averages. Engelund (1970) justifies the approximation tz = 0*077u* D in a 
wide channel, and Engelund (1970) and Fredsoe (1974) hold this value constant for 
slightly varying flows. Okoye (1970) uses flume data to construct a chart for depth- 
averaged B., in which €.,/.* D increases slowly with the aspect ratio BID. A value 
appropriate for the Simons & Albertson (1963) canal data (laterused to test the theory) 
is e., = 0.13u, D. Fischer (1973) suggests that Okoye’s diagram can be applied to field 
conditions only if the channel and thalweg do not meander, as is assumed herein. For 
wide channels, constant values of e., and E based on the cross-sectionally averaged flow 
deviate little from constant values based on the flow in the central region, where essen- 
tially u* = u,, and D = 0,. Thus the following constant values are adopted: 

€ = 0.077~*,  D,, €., = 0 * 1 3 ~ * ,  0,. 

The steady-state equation of mass balance of suspended sediment in the channel is 

The water surface boundary condition is that of vanishing vertical flux: 

[&/& + v, C],=D = 0. (10) 

The bed boundary condition (1) can be used directly with little error for moderate 
lateral bed curvature. 

The problem is simplified by integrating (9) in the vertical. Integrated equations are 
common in the literature on the diffusion of contaminants in rivers (Fischer 1973). 
An approximate integration appropriate for moderate curvature with the use of the 
gradient boundary condition (1 a )  and (10) yields 

dF-/dy = d - 9, ( 1 1 )  

where SL, the vertically integrated lateral suspended flux, is approximately 

and < = j” c ( z )  ax 
0 

is the vertically integrated concentration. 
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Relation ( 1  1) serves as the first basic relation of the analysis. Clearly if d T L / d y  i 0 
then according to (1 1)  either overloading occurs, causing deposition a t  the rate 9 - 8, 
or underloading occurs, causing bed scour at  the rate & - 9. 

Total (suspended and bed) sediment mass balance provides the second basic 
relation: if q B L ( Y )  is the lateral volumetric bed load per unit downstream length, 

d(TL f qBL)ldY = O* (14) 

This condition and ( 1  1 )  ensure that the pattern of scour and fill due to lateral bed 
load just balances that due to lateral diffusion, so that a steady state is maintained. 

The boundary conditions on ( 1  1 )  and (14) are vanishing depth and lateral bed and 
suspended load a t  both water margins: 

(15) I D(0) = 0) QBL(0) = 0, S L ( 0 )  = 0) 

D ( B )  = 0, qB,T(B) = 0, sL(B) = 0. 

Now q B L ,  9 and & must be related to the flow. Lateral bed load is considered first. 
Engelund’s ( 1  974) analysis is supported by experiment in that paper and in Engelund 
( 1975). Neglecting secondary currents, gravitational bed load down moderate lateral 
slopes is related to the longitudinal bed load per unit width qB by 

Here ,u is a dynamic Coulomb friction coefficient; Engelund (1974) deduces a value of 
about 0.577 from Hooke’s (1974) experiments (Ds l :  0.3mm). Among the many 
choices for q B  (see, for example, White, Milli & Crabbe 1973), Chien’s (1956) modified 
form of the Meyer-Peter & Miiller (1948) relation is fairly simple: 

where rz  = ra/pWgDs, ro is the grain bed stress, ps and p are the sediment and fluid 
densities, W = p s / p  - 1, and r$ is the critical Shields stress, taken to be 0.047. For 
most natural material, W = 1.65; this value is used herein. Relation (17) has been used 
in Engelund’s (1970) study of the instability of flat beds, where rG = 7, the total bed 
stress, and its approximate validity for flat beds has been reaffirmed experimentally 
by Luque & Van Beek (1976). The relation can be extended to beds covered with 
dunes provided that 7; can be related to r* = r/pgWD,. Engelund & Hansen (1967) 
have proposed that 

r*, -r:r = 0 - 4 ~ * ~ .  

This relation is part of a method for the prediction of stage-discharge relations in 
rivers that has been judged to be one of the more accurate at present available 
(Kennedy 1975). Reducing (16) with (17) and (18) gives 

(18) 

(In fact Engelund & Hansen chose rzr = 0.06; however, the discrepancy in qBL caused 
by the difference between this value and that in (17) is usually negligible at the 
comparatively high values of r* a t  which appreciable suspension occurs.) 
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The deposition rate 9 is given exactly by (2).  This form cannot be used in a vertically 
integrated treatment, so it is replaced with an approximate form involving 6. From 
the zero-flux-flow solution ( 8 ) ,  

(The approximation was introduced by Engelund (1970) and is valid for most experi- 
mental and field fluvial sand suspensions.) Assuming, as before, that this relation 
holds approximately above a moderately curving bed, the approximate form 

9 = (v:/4 5 (20) 

of (2) is obtained and is used herein. 
It is proposed that the erosion rate be evaluated from Engelund's approximate 

form ( 5 ) ,  in conjunction with the condition that suspensionvanishes and Eis arbitrarily 
set equal to zero when 

(Engelund & Fredsoe 1976). This relation is more conveniently expressed in terms of 
Shields' stress r*, where u*/vs = r*t/R, and R, = vs/(&?gDs)4 can be related to a 
particle Reynolds number Rp = [(WgD,)~D,]/u ( u  is the fluid kinematic viscosity) 
through the use of the drag curve for spheres, as shown in figure 3. Thus 

u*/v, < 0.8 (21) 

E = 0 * 0 0 7 3 ~ * ~ ' ~ R 7 ~ .  

Two minor modifications are now made for convenience. This relation has been verified 
only for plane or antidune beds, for which r* N 7;. Under such conditions 7: is so 
much larger than r,*, that  7: can be accurately replaced by rg-r$. Furthermore, 
the range of particle sizes (0.1 N 0.28 mm) used to determine the relation is too narrow 
to determine accurately the dependence of E on R,, accordingly R, is replaced by its 
value for D, = 0.2mm a t  SO'C, R, = 0.43. Thus 

E = 0*092(7*, - ~e*7)l'~. 
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This relation should be reasonably accurate if not applied to particle sizes much 
different from those used in its determination. 

This form is still strictly valid only for nearly plane beds. Here i t  is assumed to  be 
valid for dune beds as well and is reduced with (18), yielding 

E = 0 ~ 0 2 3 3 r " ~ .  (22) 

This relation is adopted herein. It should be noted that the extension of plane-bed 
relations pertaining to suspension to dune beds by the simple replacement of T *  with 
T: is not well founded (Vanoni 1975). However this procedure, introduced by Einstein 
(19501, is still in common use (e.g. Engelund & Fredsoe 1976) and does not seem to 
provide a critical misrepresentation. 

The formulation is completed with an expression for longitudinal momentum 
balance. It can be seen in the companion paper that for a moderately curving bed 

(23) 
the relation 

T = pgDX 
is of sufficient accuracy. 

6. Solution for the equilibrium channel 
Equations (1 1) and (14) are now reduced and solved. The parameters gC and 4. 

are the values of 9 and & at the channel centre, where y = BB, and FL and qst are 
scaled by the constants 

gTd = ev CcL-', qSr, = 3 * 5 1 ~ , * ~ D ,  L-l (&'gDs)&Ds, 

where the subscript c again denotes the value at the channel centre. The dimensionless 
depth s, the lateral distance from the left water margin 7 and the integrated con- 
centration Z are defined as s = D/Dc, 7 = y /B  and Z = </cc. It turns out to be more 
convenient to work with G = s4 than s itself. With these definitions and with the aid 
of (19), (20), (22) and (23), relations (11) and (14) can be expressed in the form 

l i d 2 #  d2Z A Z - G P ,  --=-- 
y d2G 
4 dy2 4 dT2 dq2' 

where P = $ and the relevant dimensionless constants are 

-- == 

It is necessary to solve only for the left half of a symmetrical channel. The six boundary 
conditions (15) are seen to be equivalent to 

G(0) = 0, [dG/d?lll=o = 0, [dz/d7],=0 = 0, ( 2 7 4  

G ( 4 )  = 1,  Z(4) = 1, [dG/dq],=+ = 0. (27 b )  

The system represented by (24), ( 2 5 )  and (27) is of fourth order, yet six boundary 
conditions are specified, i.e. the problem is overspecified. Thus two of the dimension- 
less constants defined in (26) cannot be free and are determined by the solution; it 
turns out that  these are h and K .  

Even though (24) is nonlinear, (24), ( 2 5 )  and ( 2 7 )  can be solved exactly. It is much 
easier in terms of analysis and physical interpretation, however, to obtain an approxi- 
mate solution with the use of singular perturbation techniques. It will be found that 
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for the typically high aspect ratios sit' = BIDc characteristic of field channels the 
inaccuracy in doing this is negligible. 

First (25 )  is integrated once and reduced with the aid of the second and third 
boundary conditions in (27 a), yielding 

a K d G / d r  = dZ/dy. (28 )  

It is now noted that y can be made arbitrarily small by considering channels of 
increasing width B. The assumption of small y suggests asymptotic expansions in y 

G = G o + y N G l +  ..., of the form 

z = z,+ yNZ, ... , 

where N > 0, which are inserted into ( 2 4 )  and ( 2 8 ) .  To lowest order, dropping the 
subscript, 

These relations neglect the lateral redistribution term on the left-hand side of (24 ) ,  
which is assumed to be responsible for bank maintenance, thus they must be valid 
only 'far away' from the banks, i.e. in the central region of figure 1. The appropriate 
boundary conditions are (27 b ) ;  the only permissible solution determines the constant 
h as well as G and 2: 

h Z - G P  = 0, ) K d G / d r  = dZ/dT. 

G = 1 ,  Z = 1 ,  h = l .  ( 2 9 )  

In fact, (29) is an exact solution to (24) and (28) and is correct to all orders in the 
expansion. It is the zero-flux-flow solution, the condition h = 1 ensuring that ( 3 b ) ,  
the balance between erosion and deposition, is satisfied. In  the terminology of singular 
perturbation analysis, it  is the outer solution. 

The inner variable appropriate for the left bank region (a boundary layer in the 
analytical sense) is r = r / y t .  

Equations (24) and (28) become 

$d2G/dr2 = Z - Gp,  (30)  

aKdO/dr = dZ/dr .  (31)  

G(0) = 0, [dG/dr ] ,= ,  = 0 (32a)  

GI,=, = 1, ZIT,, = 1. (32b)  

From ( 2 7 ) )  the bank boundary conditions are 

and limit matching with the outer solution requires that 

As before, only the lowest-order term in the inner expansion is non-vanishing, so 
(30) - (32)  can be solved directly, determining 2, G and K as well. The solution is 

z = 1 - $ ( 1 - G ) ,  = _2_. 7 (3417 (35) 

Not'e that since 0 < G < 1,  ( 3 4 )  satisfies the rational condition Z 2 0, i.e. that the 
concentration should never be negative. 
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Relation (35), reduced with (26b) ,  provides the most important result of the analysis: 
a specification of the centre depth as a function of the downstream slope, particle 
size and particle Reynolds number, where R, = DJD, is the centre relative roughness, 

Rc = 85.1 RjS-4. (36) 

The value of' r a t  which 99 yo of the centre depth is obtained, i.e. where s = 0.99 
(G = 0.961)) is called rg9 and is found to be rgg = 6.17.  It then can be shown that 

L/Dc = 1 * 1 4 ~ * ~ / ~ ~ ,  qBL/LgC = 0.0263. (37)  

A condition that must be satisfied for the existence of a central region (as defined 
herein) is that 2L/B < 1 ;  this and (37) ensure that if a central region exists a t  all the 
condition of small y is satisfied. 

A dimensionless universal lateral profile of the bank region can be obtained from 
(33), and is plotted as s vs. w = r / rg9 = y /L  in figure 4. The average depth of the bank 
region is found to be 0.84 D,, and the average depth of the total channel is related 
to D, by 

B/D,  = 1 - 0.32 LIB. 

The profile in figure 4 attains infinite slope a t  w = 0; thus in a small portion of the 
bank region about this point the assumptions on which this analysis is based are not 
valid. I n  fact, the solution (33) is not valid all the way to  the water margin for a number 
of reasons, the most compelling of which is the fact that  according to (21) suspension 
ceases where the depth becomes too shallow. I n  principle, for a truly non-cohesive 
channel, (33) must be terminated a t  this point and replaced with a static equilibrium 
appropriate for particles so small that  the critical condition for bed load is synony- 
mous with the critical condition for suspension (D, less than about 0.14 mm). Such 
a static equilibrium is described i n - h  companion paper. However, i t  is coincidental 
that  most field channels have vegetation a t  the water margins, the roots of which 
allow the profile in figure 4 to be a t  least qualitatively fulfilled a t  w = 0. 

7. Comparison with data 
Data for the seven non-cohesive canals listed in Simons & Albertson (1963) include 

values of D,, (particle size such that 85 % of a sample is smaller), D,, and D,, for bed 
and side material. Doubt immediately arises in so far as the analysis is formulated 
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River Section Q(m3/s) DC(d B(m) S x 103 B,,(mm) 

Middle Loup A 11.1 0.210 87.8 1.29 0.18 

c, 11.5 0.472 25.0 1.34 0.23 
E 11.1 0.324 44.2 1.19 0.20 

Nio brara c2 9.6 0.396 33.5 1.23 0.18 
C6 9.9 0.316 40.5 1-40 0.175 

B, 10-7 0.483 28.6 1.33 0.20 

TABLE 1.  Characteristics of cross-sections of Middle Loup and 
Niobrara Rivers used to test (36). 

Low 
4.5 
0.210 
9.0 
0.190 
0.147 

High 

1.12 

1.40 
0.316 

11.5 

87.8 

TABLE 2. Range of various parameters in data used to test (36). 

for uniform material. An appropriate ‘effective ’ particle size D, that dominates in 
the postulated bed-bank exchange might be among the smaller sizes. The data indicate 
that few particles af the sizes near D,, of the bed are in suspension; these sizes are also 
not abundant in the banks. Particles of the size D,, of the bed material are, however, 
abundant in hhe banks and D,, might be an appropriate estimate for D,. The data 
provide reasonable agreement with this choice, and it has been adopted herein without 
further adjustment . 

In order to increase the amount of data used to test the theory, information for four 
cross-sections of the Middle Loup River (Hubbell & Matejka 1959) and two cross- 
sections of the Niobrara River (Colby & Hembree 1955) was used. Other cross-sections 
therein were excluded owing to either a lack of data or explicit indications of locally 
inerodible banks. The cross-sections of the Middle Loup River are on straight reaches; 
those of the Niobrara are at  locally straight regions of a weakly meandering reach. 
Both these streams flow through the Nebraska sandhills and have unusually uniform 
discharges maintained by groundwater accretion. The cross-sections are adjacent to 
sites where extensive measurements of total and suspended load have been taken. 
The bankfull discharge was not listed; the dominant discharge was chosen to be that 
which if it continued constantly for one year would carry the total load for the year. 
This was found to be 11.0 cumecs for the Middle Loup and 9.9 cumecs for the Niobrara. 
The cross-sectional surveys that were conducted at  conditions closest to the adopted 
dominant discharges were chosen. The width of these cross-sections allows the accurate 
approximation of D, with the average depth; it also suggests a small upward adjust- 
ment of e,, which has not been performed for the sake of simplicity. Cross-sectional 
characteristics are described in table 1. 

The ranges of Q (the observed water discharge), B, 8, 0, and D,, (the size of the 
bed material) for the data are given in table 2. 

In figure 5, centre depths calculated from (36) are compared with observed values. 
In so far as the theory is approximate and the effective particle size has been chosen 
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FIGURE 5. Comparison of equation (36) with data. 0, non-cohesive canals of Simons & Albertson 

(1963); A, Niobrara River; 0, Middle Loup River. 

0 0.25 0.50 

0 0.25 0.50 

Y l f B  

FIGURE 6. Calculated (solid line) and measured (circles) relative channel profiles for (a) canal 
no. 9, station 5 + 00 and (b )  canal no. 23, station 4 + 00. Data are from Simons ( 1957). The measured 
values represent averages of the values for the left and right halves. 

arbitrarily, one must be cautious in interpreting this figure. At the very least it 
indicates that the mechanism postulated for channel maintenance is a reasonable one 
that can predict grossly correct depths. 

Calculated and observed channel profiles for two of the non-cohesive canals are 
compared in figure 6. The value of L was calculated from observed data and a value Of 
0, obtained from (36). The fits are fairly typical of the canal data. 
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8. Towards rational regime relations 
The analysis can be used to obtain rational regime relations. Although this is not 

done explicitly herein, the method is indicated below. A resistance relation for the 
vertically averaged flow velocity V such as that due to Engelund (1970), 

T ' / U * ~  = 6 + 2.5 In (R, /2-5) ,  

where the subscript G refers to the grain resistance, and relations for the bed and 
suspended load allow the prescription of the water discharge per unit width 9 and 
the total downstream volumetric sediment discharge per unit width q at every point 
y on a cross-section. The total water discharge Q and sediment discharge Q, are given by 

where the subscript c denotes centre conditions. Relations (36), (38) and (39) form a 
set of three regime relations. If v and the characteristics of the bed material are known 
and any two of the parameters D,, B, Q, Q, and X are prescribed as independent 
variables [except the pair D, and S, which is constrained by (36)], the other three 
can be calculated. 

9. An observation concerning secondary currents ; other modifications 
Secondary currents in meandering channels, or meandering flows in straight 

channels, are known to play an important role in determining the cross-sectional 
channel shape (e.g. Engelund 1974; Kikkawa, Ikeda & Kitagawa 1976). Some re- 
searchers have suggested that the weaker secondary currents in straight, laterally 
symmetrical channels play an important role in bank stabilization (e.g. Wilson 1973). 
The hypothesis is that lateral cells that develop near banks have bottom flows directed 
bankwards, inducing a stabilizing force which opposes the erosive effect of gravity, 
Brundrett & Baines (1964) present results for a square duct for which the velocities 
of the secondary flow are not in excess of 3 % of the axial centre-line velocity. Shen 
& Komura (1968) summarize the results of three studies in straight rectangular ducts 
for which the velocities of the secondary flow do not exceed 3.5 yo of the axial centre- 
line velocity. It seems reasonable to assume that such currents should be much 
weaker in straight symmetrical self-formed channels which have no sharp corners 
on the bed. 

The stabilizing effect can be estimated as follows. According to Engelund (1074), 
in the absence of secondary currents the ratio of the downward lateral bed force F, of 
gravity on moderate slopes to the downstream bed force F, due to the primary flow is 

Fg 1 d D  

where ,u can be assumed to take the value given in § 5 .  Engelund & Skovgaard (1973) 
indicate that the ratio of the lateral bed force F, induced by lateral currents to Fx 
obeys the approximate relation 

_ N  -- 
Fx - P dY ) 

&/Tx N (%/42. 
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Here u, is lateral flow velocity and u is the downstream flow velocity, both measured 
near the bottom of the turbulent core. Even for values of uJu as high as 0.15, on a slope 
aslow as loo, FJFg is estimated to be about 0.07. This suggests the neglect of secondary 
currents as a stabilizing agent, as has been done herein. On the other hand, it is possible 
that they might act to convey suspended sediment towards the banks, thus augmenting 
deposition. 

Of course the problem has by no means been resolved. A proper inclusion of secondary 
currents is only one of the many modifications that could be made. Some others are a 
two-dimensional approach rather than the depth-integrated approach used herein, 
allowance for laterally varying bed material, the use of more accurate relations for 
suspended and bed sediment, and detailed specification of eg and E on a cross-section. 
A fairly sophisticated model would probably require numerical solution. 

It should be noted that the straight equilibrium channel described herein cannot 
usually be stable with respect to meandering tendencies. However, meandering in 
itself does not seem to provide a mechanism for choosing a preferred width for a 
channel migrating in a non-cohesive flood plain. A crude model of meandering non- 
cohesive channels might be constructed as follows: the mechanism described herein 
dominates width maintenance and the flow in meander bends provides a mechanism 
for additional alternate erosion and deposition leading to channel migration. 

Victor Galay provided a comment that proved helpful in justifying this work. 
Discussions with R. L. Gerard and William Brownlie are also acknowledged. Funding 
was provided by the National Research Council of Canada. 

Appendix 
It is assumed that zero-flux flow, with solution (8), has developed in a channel. With 

no change in flow conditions, the channel is now subjected to a uniform constant rain 
of particles, identical to those in the flow, from above the water surface. Thus overloaded 
conditions are imposed by a constant downward volumetric flux I across the water 
surface. For sufficiently small I ,  the bed height increases only slowly owing to depo- 
sition and a time range exists in which approximately steady, uniform overloaded 
conditions are realized. 

The concentration is written as c ( z )  = C J Z )  + e ( z ) ,  where co(z) is given by (8) and 
e ( z ) ,  the overload concentration, satisfies (7), 

de d de -us- = - 6 -  
dz  dz dz’ 

and the water surface boundary condition 

[ede/dz + v, el, = D  = I .  
If the concentration boundary condition is used to complete the formulation, then c(a) 
is a function of flow variables alone, unaffected by overloading; thus 

c(a)  = c,+e(a) = c,, 

or e(a) = 0. This yields the solution 
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Sediment Feed - 
. . . . . . . 

Bed 

Sediment feed - 
Water surface 

Bed 
FIGURE 7. Solution for steady uniform overloading obtained with (a)  the gradient boundary 

condition and (b )  the concentration boundary condition. 

The gradient boundary condition requires that the rate of erosion be unaffected 
by overloading, leading to [ d e / d ~ ] , = ~  = 0. This yields a quite different solution: 

e ( z )  = I/vs.  

These two solutions for e are plotted in figure 7. Since the situation is that of a 
uniform rain of particles falling through a turbulent fluid, it is clear that the solution 
based on the gradient boundary condition is the correct one. 

R E F E R E N C E S  

BRICE, J. C. 1974 Evolution of meander loops. Geol. SOC. Am. Bull. 85, 581-586. 
BRIDGE, J. S. & JARVIS, J.  1976 Flow and sedimentary processes in the meandering River 

BRUNDRETT, E. & BAINES, W. D. 1964 The production and diffusion of vorticity in duct flow. 

CRIEN, N. 1956 The present status of research on sediment transport. Trams. A.S.C.E. 121, 

COLBY, B. R. & HEMBREE, C. H. 1955 Computations of total sediment discharge Niobrara 

EINSTEIN, H. A.  1950 The bed-load function for sediment transportation in open channel 

EINSTEIN, H. A. 1972 Sedimentation. In River Ecology and M a n  (ed. R .  Oglesby), pp. 309-318. 

ENGELUND, F. 1970 Instability of erodible beds. J .  Fluid Mech. 42, 225-244. 
ENGELUND, F. 1974 Flow and bed topography in channel bends. Proc. A.S.C.E., J .  Hydraul. 

ENGELUND, F. 1975 Instability of flow in curved alluvial channels. J .  FZuid Mech. 72, 145-160. 
ENGELUND, F. & FREDSOE, J. 1976 A sediment transport model for straight alluvial channels. 

Nordic Hydrol. 7, 293-306. 
ENGELUND, F. & HANSEN, E. 1967 A Monograph on Sediment Trarwport in Alluvial Streams. 

Copenhagen: Teknisk Vorlag. 
ENGELUND, F. & SXOVGAARD, 0. 1973 On the origin of meandering and braiding in alluvial 

streams. J .  Fluid Mech. 57, 289-302. 
FISCHER, H. B. 1973 Longitudinal dispersion and turbulent mixing in open-channel flow. Ann. 

Rev. Fluid Mech. 5, 59-78. 

South Esk, Glen Cova, Scotland. Earth Surface Processes 1, 303-336. 

J .  Fluid Mech. 19, 375-394. 

833-868. 

River near Cody, Nebraska U.S. Geol. Survey Water Supply Paper no. 1357. 

flows. U.S. Dept Agric. Tech. Bull. no. 1026. 

Academic Press. 

Div. 100 (HY l l ) ,  1631-1648. 



Rivers with equilibrium banks and mobile bed. Part 1 125 

FREDSOE, J. 1974 On the development of dunes in erodible channels. J .  Fluid Mech. 64, 1-16. 
HIRANO, M. 1973 River-bed variation with bank erosion. Proc. Japan SOC. Civil Engrs no. 

HOOKE, R. LEB. 1974 Shear-stress and sediment distribution in a meander bend. Dept Phys. 
Geogr., Univ. Uppsala, Ungi Rep. no. 30. 

HUBBELL, D. W. & MATEJKA, D. Q. 1959 Investigations of sediment transportation Middle 
Loup River a t  Dunning, Nebraska. U.S. Geol. Survey Water Supply Paper no. 1476. 

KENNEDY, J. F. 1963 The mechanics of dunes and antidunes in erodible bed channels. J .  Fluid 
Mech. 16, 521-544. 

KENNEDY, J.  F. 1975 Hydraulic relations for alluvial streams. In sedimentation Engineering. 
A.S.C.E. Manwal no. 54, pp. 114-154. 

KIKKAWA, H. ,  IKEDA, S. & KITACAWA, A. 1976 Flow and bed topography in curved open 
channels. Proc. A.S.C.E., J .  Hydraul. Div. 102 (HY 9), 1327-1342. 

LUQUE, R. F. & VAN BEEK, R. 1976 Erosion and transport of bed-load sediment. J .  Hydraul. 
Res. 14 (Z), 127-144. 

MEYER-PETER, E. & MULLER, R. 1948 Formulas for bed-load transport. Proc. 2nd Conf. Int. 
Ass. Hydraul. Res. p. 39. 

OKOYE, J.  K.  1970 Characteristics of transverse mixing in open-channel flow. W.M.  Keck 
Lab. Hydraul. Water Resources, Calif. Inst. Tech., Rep. KH-R-23. 

PARKER, G. 1978 Self-formed rivers with stable banks and mobile bed. Part 2. The gravel 
river. J .  Fluid Mech. 89, 127-147. 

SHEN, H. W. & KOMURA, S. 1968 Meandering tendencies in straight alluvial channels. Proc. 
A.S.C.E., J .  Hydraul. Div. 94 (HY 4), 997-1017. 

SIMONS, D. B. 1957 Theory and design of stable channels in alluvial material. M.Sc. thesis, 
Colorado State University. 

SIMONS, D. B. & ALBERTSON, M. L. 1963 Uniform water conveyance channels in alluvial 
material. Trans. A.S.C.E. 128, 65-105. 

SMITH, T. R. 1974 A derivation of the hydraulic geometry of steady-state channels from 
conservation principles and sediment transport laws. J .  Geol. 82, 98-104. 

VANONI, V. A. 1975 Fundamentals of sediment transportation. In Sedimentation Engineering. 
A.S.C.E. Manual no. 54, pp. 154-189. 

WHITE, W. R., MILLI, H. & CRABBE, A. D. 1973 Sediment transport: an appraisal of available 
methods. Hydraul. Res. Station, Wallingford, Berks, Rep. INT 119, vols. 1 and 2. 

WILSON, I. G. 1973 Equilibrium cross-sections of meandering and braided rivers. Nature 241, 
393-394. 

210, pp. 13-20. 


